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Performance Surfaces and Adaptive Landscapes1
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SYNOPSIS. In an earlier characterization of the relationship between morphology, performance and fitness,
I focused only on directional selection (Arnold, 1983). The aim of this article is to extend that characteriza-
tion to include stabilizing and other forms of nonlinear selection. As in the earlier characterization, this
more general description of the morphology-performance-fitness relationship splits empirical analysis into
two parts: the study of the relationship between morpholgy and performance, and the study of the relation-
ship between performance and fitness. From a conceptual standpoint, my goal is to specify the relationship
of performance studies to the adaptive landscape. I begin by reviewing the adaptive landscape concept and
its importance in evolutionary biology. A central point emerging from that review is that that key descriptors
of the adaptive landscape can be estimated by measuring the impact of selection on the means, variances
and covariances of phenotypic traits. Those descriptors can be estimated by making a quadratic (regression)
approximation to the selection surface that describes the relationship between the phenotypic traits of in-
dividuals and their fitness. Analysis of the effects of morphology on performance follows an analogous
procedure: making a quadratic approximation to the individual performance surface and then using that
approximation to solve for the descriptors of the performance landscape. I conclude by discussing the
evolution of performance and adaptive landscapes. One possibility with biomechanical justification is that
the performance landscape evolves along performance lines of least resistance.

INTRODUCTION

An adaptive landscape for phenotypic characters
was first proposed by Simpson (1944, 1952). This
landscape characterization of evolution was derived
from Wright’s concept of an adaptive landscape in
which population fitness is a function of gene fre-
quencies (Wright, 1932). In Wright’s landscape, mean
fitness in the population, W̄, is a function of the fre-
quency, p, of an allele. Simpson (1944) used pheno-
typic adaptive landscapes to successfully argue that the
results of paleontology could be reconciled with ge-
neticist’s view of population evolution (Wright, 1945).
Lande (1976, 1979) showed that properties of an adap-
tive landscape for phenotypic traits specified the force
of selection in equations for change in the means, var-
iances and covariances of the traits. In Lande’s land-
scape, the natural log of population mean fitness, lnW̄,
is a function of the average values of one or more
continuously distributed phenotypic traits, z̄. As in
Wright’s landscape, the population mean tends to
evolve in an uphill direction on this phenotypic land-
scape (Lande, 1979). These theoretical developments
merged Simpson’s idea of an adaptive landscape with
concepts of inheritance that had been developed in the
field of quantitative genetics.

The importance of the adaptive landscape as an in-
tegrating concept has long been appreciated. This im-
portance is reflected in the long history of the land-
scape and related concepts in the evolutionary litera-
ture (Pearson, 1903; Fisher, 1930; Wright, 1931; Dob-
zhansky, 1937; Simpson, 1944; Schmalhausen, 1949).
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The power of the landscape idea is that it ties together
many of the fundamental ideas in evolutionary biology
(modes of selection, responses to selection, adaptation,
speciation, adaptive radiation). Because of their power,
landscapes have been sought for various kinds of traits
(e.g., proteins, RNA) with varying degrees of success
(Govindarajan and Goldstein, 1997; Fontana and
Schuster, 1998; Bornberg-Bauer and Chan, 1999). The
most common kind of failure in landscape pursuit is
inability to find empirically accessible aspects of traits
that can in turn be related to a property, such a pop-
ulation mean fitness, that governs evolutionary trajec-
tories. Against the background of these unsuccessful
quests, the tangible existence of an adaptive landscape
for phenotypic traits shines like a beacon across the
field of evolutionary biology. We have succeeded here,
so perhaps we can succeed elsewhere.

THE ADAPTIVE LANDSCAPE FOR PHENOTYPIC TRAITS

Success in specifying a useful adaptive landscape
for phenotypic traits rests on a foundation of three as-
sumptions (Lande, 1976, 1979; Lande and Arnold,
1983). (a) Phenotypic traits are normally distributed
within populations, or are approximately normal after
suitable transformation. (b) The function that relates
the trait values of individuals to their expected indi-
vidual fitness can plausibly assumed to be smooth and
continuous. In other words, we can specify its first and
second derivatives. (c) Fitness is frequency-indepen-
dent in the sense that the fitness of individuals is af-
fected by their own trait values, but not by the trait
values of other individuals in the population. Although
these assumptions somewhat restrict our domain of ap-
plication, they grant enormous conceptual power.

How can we tap into the conceptual power of the
adaptive landscape? Many authors have assumed that
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TABLE 1. Nomenclature for surfaces and landscapes.

Name of surface or landscape

Dimensions

Vert. Hori. Slope1 Curvature2

Individual selection surface (selection surface)
Adaptive landscape for morphology (adaptive landscape)
Individual performance surface (performance surface)
Performance landscape for traits (performance landscape)
Individual selection surface for performance (selection surface for performance)
Adaptive landscape for performance (performance adaptive landscape)

w(z)
ln W̄
f(z)
ln F̄
w( f )
ln W̄

z
z̄
z
z̄
f
f̄

b
b
bf

bf

bw

bw

g
g2bbT

gf

gf2 bf bT
f

gw

gw2 bwbT
w

1 The symbol represents the average slope in the case of individual surfaces.
2 The symbol represents the average curvature in the case of individual surface.

the adaptive landscape is merely a metaphor (Eldredge
and Cracraft, 1980; Provine, 1986; Dawkins, 1996).
These authors have ignored the possibility that the
adaptive landscape—like mutation, drift, and inheri-
tance—is an object for empirical study. The adaptive
landscape for phenotypic traits is accessible to us be-
cause of the immediate changes that it induces in the
means, variances and covariances of traits within a
generation. The features of the landscape that cause
changes in means, variances and covariances are its
slope and curvature, its first and second derivatives.
The first and second derivatives of the landscape also
play a fundamental role in predicting how the popu-
lation mean, z̄, will change from one generation to the
next in respond to selection, and how the inheritance
matrix, G, will change within a generation in response
to selection;

¯] ln W
21Dz̄ 5 GP (z̄* 2 z̄) 5 G (1)

]z̄
2 ¯] ln W

21 21D G 5 GP (P* 2 P)P G 5 G G (2)s 2]z̄

(Lande, 1979, 1980; Lande and Arnold, 1983). In
these equations z̄ and P are, respectively, a column
vector of phenotypic means and their variances and
covariances (P is a matrix; P21 is its inverse) before
selection; asterisks denote these same parameters after
selection within a generation. G is the inheritance ma-
trix (additive genetic variance-covariance matrix) that
translates the effects of phenotypic selection into ge-
netic values, either across generations (1) or within a
generation (2). These equations also show that the first
and second derivatives of the adaptive landscape can
be estimated from the changes that selection causes in
the first and second moments of the phenotypic distri-
bution. In other words, the slope of the adaptive land-
scape can be inferred from the shift that selection caus-
es in the phenotypic mean. The curvature and orien-
tation of the adaptive landscape can be inferred from
the expansions and contractions that selection causes
in phenotypic variances and covariances. Quadratic re-
gression is a useful tool for accomplishing these in-
ferences (Lande and Arnold, 1983; Phillips and Ar-
nold, 1989; Brodie et al., 1995; Stinchcombe et al.,
2002).

In our empirical quest for the adaptive landscape it
will be useful to recognize an important way station
known as the individual selection surface. Our ap-
proach will be to first characterize this individual se-
lection surface and then use theoretically-derived con-
nections between this surface and the adaptive land-
scape to make inferences about the adaptive landscape.
What is the individual selection surface?

The individual selection surface (Pearson, 1903) is
the relationship between the relative fitness of individ-
uals in a population and the values of a set of phe-
notypic traits. The adaptive landscape is a function of
mean trait values; the selection surface is a function
of individual trait values (Table 1). Using data on the
fitness of individuals and their phenotypic traits, we
could use any of a variety of curve-fitting approaches
to estimate the individual selection surface. A popular
approach is to use the method of cubic splines, which
is capable of matching the shape of a wide variety of
surfaces in one or more character dimensions (Schlu-
ter, 1988; Schluter and Nychka, 1994). The goal in
such an exercise is to accurately describe the shape of
the selection surface. Our goal, however, is different
and so demands another approach. Our goal is to char-
acterize the selection surface in a way that will give
us straightforward insights about the adaptive land-
scape. The cubic spline approach will not accomplish
this goal because the connections between cubic
splines and the adaptive landscape are unknown and
may not exist. In other words, it has not been estab-
lished that the first and second derivatives in equations
(1) and (2) can be estimated with cubic splines. Al-
though cubic splines will not get us to our goal, an-
other approach will. That approach is called quadratic
approximation. In this approach, second-order (qua-
dratic) rather than third-order (cubic) polynomials are
used to approximate the individual selection surface.

A quadratic approximation to the individual selec-
tion surface can be made by using a least-squares re-
gression approach (Lande and Arnold, 1983). For con-
venience we will assume from here on that the values
of individual values for traits, z, have been standard-
ized so that their means are zero, and relative fitness,
w, has been standardized so that its mean is one. We
will use the following multiple regression model to
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FIG. 1. Path diagram corresponding to the linear approximation (7)
to the individual selection surface for a set of morphological traits
(morphology), denoted z. The effects of morphology on fitness, w,
are mediated through a set of performance variables, f. The perfor-
mance gradient, bf, is the slope of the fitted performance surface.
The fitness gradient is bw.

relate the individual values of multiple traits, z, to rel-
ative fitness, w

1
T Tw 5 a 1 b z 1 z gz 1 «, (3)

2

using the notation of Phillips and Arnold (1989). In
this multivariate version of the model, z is a column
vector of individual traits values, zT is the row vector
version of that same vector (the transpose of z). The
intercepts in the model are a (a column vector) and
errors or residuals are « (a column vector). The point
of this model is to estimate the linear directional se-
lection gradients b (a column vector) and the nonlinear
selection gradients g (a matrix). The factors of ½ in
(3) serve the role of making the g coefficients equiv-
alent to second derivatives.

Why are we interested in b and g? One point of
interest is that these coefficients correct for the effect
of trait correlation and so can help us identify the tar-
gets of selection. We shall return to that point shortly.
The other point of interest—the primary one in our
present discussion—is that we can infer the first and
second derivatives of the adaptive landscape from b
and g. The relationship of b to the adaptive landscape
is straightforward. b is the average slope of the indi-
vidual selection surface, w(z), but it is also the direc-
tion of steepest uphill slope on the adaptive landscape,
ln W̄, in the vicinity of the phenotypic mean, z̄,

¯]w(z) ] ln W
b 5 p(z) dz 5 , (4)E ]z ]z̄

where p(z) are the frequencies of the phenotypic values
z in the population before selection (Lande and Ar-
nold, 1983). The relationship of g to the adaptive land-
scape is slightly more complicated. In parallel with the
first expression in (4), g is the average curvature of
the individual selection surface,

2] w(z)
g 5 p(z) dz (5)E 2]z

(Lande and Arnold, 1983). The curvature of the adap-
tive landscape, however, is a function of both g
and b,

2 ¯] ln W
T5 g 2 bb (6)

2]z̄

(Lande, 1979; Phillips and Arnold, 1989). One way to
understand this more complicated relationship, is to
notice that, whereas the elements in g represent just
the effects of nonlinear selection on the variance or
covariance of characters (Lande and Arnold, 1983, eq.
14a), the elements in the matrix ]2lnW̄/]z̄2 represent
both the effects of linear and nonlinear selection on
variances and covariances. The matrix bbT represents
just the effects of linear selection on variances and
covariances.

SELECTION ON MORPHOLOGY VIA EFFECTS ON

PERFORMANCE AND FITNESS

Performance is a measure of whole organism ca-
pacity (Bartholomew, 1958; Bennett, 1980). Depend-
ing on the traits and ecological circumstance of inter-
est, performance might take the form of seed dispersal
ability, shell-crushing capacity, swimming speed, or
tree-climbing ability. Performance in its various guises
is a central issue in ecological morphology, physiolog-
ical ecology, functional morphology and other disci-
plines poised at the interface of phenotype and ecology
(Wainwright and Reilly, 1994).

The relationship of performance to selection theory
can be visualized with path diagrams that portray se-
lection surfaces (Arnold, 1983). In such a diagram
(Fig. 1) we see performance interposed between mor-
phology and fitness. In the discussion that follow
‘morphology’ will be used as a shorthand for biochem-
ical, physiological, behavioral and morphological at-
tributes that affect performance. Turning to the regres-
sion equations, the interposition of performance means
that the equation that relates morphology to fitness can
be decomposed into two equations: one that relates
morphology to performance and one that relates per-
formance to fitness:

T Tf 5 a 1 b z 1 « w 5 a 1 b f 1 « (7)i f i f i f i w w w

where f denotes various measures of performance (a
column vector) and fi denotes an element in that vector.
The total selection gradient b in the linear version of
equation (3),

T Tw 5 a 1 b z 1 « w 5 a 1 b b z 1 «, (8)w f

is a product of the performance gradient bf and the
fitness gradient bw (Arnold, 1983). Eq.(7) can be used
to estimate bf and bw even if the performance surface
or the fitness surface is curvilinear. In these instances
of curvilinearity, however, we need a more complicat-
ed model than (7) to estimate curvature itself. We shall
now turn to that more complicated model.

If the performance surface is curved we can ap-
proximate its curvature with a quadratic function. In
this quadratic approximation, performance is a func-
tion of quadratic variables, zzT, which represent the
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FIG. 2. Path diagram corresponding to the quadratic approximation
(9) to the individual selection surface for morphology. The nonlinear
performance gradient gf is the curvature of the fitted surface. Other
conventions as in Figure 1.

FIG. 3. Various shapes for quadratic performance surfaces for two
traits, z1 and z2. High and low points on the surface are indicated by
1 and 2, respectively. Dotted lines indicate performance lines of
least resistance (eigenvectors or principal axes). (a) A surface with
a peak. (b) A surface with a saddle. (c) A surface with a ridge. (d)
A surface with a rising ridge. These surfaces differ only in their
coefficients for correlational performance, gf12. From Phillips and
Arnold (1989) reproduced with permission.

FIG. 4. Various shapes for quadratic performance surfaces for three traits (y1, y2, y3) plotted on their principal axes (dotted lines). Each figure
is a contour representation of a four-dimensional surface. Performance is the fourth axis and is represented by a surface of higher performance
nested within a surface of lower performance. Dotted lines represent performance lines of least resistance. Axis labels are shown in (a). The
regions of highest performance are the origin in (b) and (c), a line in (d) and (f), a plane in (e) and a curved surface in (g) and (h). From
Phillips and Arnold (1989), reproduced with permission.

squares and products of trait values, as well as the trait
values themselves,

1
T Tf 5 a 1 b z 1 z g z 1 « . (9)f f f f2

gf is a matrix of nonlinear performance gradients. We
can also visualize this equation with a path diagram
(Fig. 2). In the two trait case,

1 1
2 2f 5 a 1 b z 1 b z 1 g z 1 g zf f 1 1 f 2 2 f 11 1 f 22 22 2

1 g z z 1 « (10)f 12 1 2 f

where g11 and g22 describe curvature in character di-
mensions z1 and z2, respectively, and g12 describes the
orientation of the surface. Quadratic surfaces can take
a limited variety of shapes in two dimensions. The
range of possibilities is shown in Figure 3. In three
trait dimensions the range is considerably greater (Fig.
4).

What is the relationship of this quadratic surface to
the actual performance surface, which might—after

all—have a more complicated shape? Regardless of
the shape of the actual performance surface, bf will
estimate its average slope and gf will estimate its av-
erage curvature (Fig. 5). bf will also estimate its slope
of the performance landscape in the vicinity of the
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FIG. 5. The individual performance surface (lower panel) and the
performance landscape (upper panel) for a single morpological trait.
In the lower panel, the bottom solid curve represent the distribution,
p(z), of the morphological variable z; the upper solid curve repre-
sents the individual performance surface, f(z); the dashed curve rep-
resents the quadratic approximation to the individual performance
surface. In the upper panel, loge mean performance, ln f̄, is a function
of mean morphology, z̄, in the population. The vertical dotted line
marks the position of z̄. Note that the mean lies at the optimum of
the performance landscape. After Phillips and Arnold (1989).

FIG. 6. The individual performance surface (lower panel) and the
performance landscape (upper panel) for a single morpological trait
when the mean morphology does not lie at the optimum of the
performance landscape. In this situation, the curvature of the qua-
dratic approximation to the individual performance surface, gf, eval-
uated at the morpological mean, overestimates the curvature of the
performance landscape, gf2b . Conventions as in Figure 3. AfterTbf f

Phillips and Arnold (1989).

FIG. 7. The individual performance surface (lower panel) and the
performance landscape (middle panel), and the adaptive landscape
(upper panel) for a single morpological trait when the mean mor-
phology lies at the optimum of the performance and adaptive land-
scapes. In the upper panel, loge mean fitness, ln W̄, is a function of
mean morphology, z̄. Other conventions as in Figure 5.

population mean, z̄, but in general the curvature of the
performance landscape at that point is gf2b (Fig.Tbf f

6). Note that this last formula is a the general one for
the curvature of the performance landscape, because
in those instances in which the permformance means
lies directly under the optimum of the landscape (Fig.
5), bf 5 0 and so b 5 0 (Phillips and Arnold, 1989).Tbf f

It is useful to characterize the performance surface
in terms of its principal axes, which represent perfor-
mance lines of least resistance. The eigenvectors (or
principal components) of the performance surface can
be calculated from the matrix gf (Phillips and Arnold,
1989). The leading eigenvector of matrix gf represents
the performance line of least resistance. Of all the lines
that we might draw on the performance surface, move-
ment along this line causes the smallest change in per-
formance. The next best orthogonal line in this sense
of least change in performance is the second eigen-
vector. The first and second eigenvectors of quadratic
surfaces in Figure 3 are shown with dotted lines. To
calculate the performance line of least resistance for
the performance landscape we need to take the leading
eigenvalue of the matrix gf2b .Tbf f

What about the total nonlinear selection gradient for
a trait or a pair of traits? If we assume that the rela-
tionship between performance and fitness can be ap-
proximated with a linear fitness gradient, viz.,

Tw 5 a 1 b f 1 « ,w w w (11)

then the total individual selection surface can be ap-
proximated by

1
T T T Tw 5 a 1 b b z 1 b z g z 1 «. (12)w f w f2

Notice that the total nonlinear selection gradient for
the traits is a function of the linear fitness gradient, bw,
and the nonlinear performance gradient, gf. Using (3–

6), the curvature of the adaptive landscape for the
traits in the vicinity of the population mean is bT

w

(gf2b , 1, we can conclude that the curvature ofTbf f

the adaptive landscape will be less than the curvature
of the performance landscape (Fig. 7).

SELECTION ON PERFORMANCE

In the preceding discussion we focused on mor-
phology and how selection on morphology was me-
diated by its effects on performance. Our perspective
was to view fitness from the perspective of fitness,
with performance an intervening variable (Fig. 1). To
consider selection on performance, we need a new per-
spective. We need to view fitness from the perspective
of performance (Fig. 8). Turning to the issue of how
selection acts on performance, we have two surfaces
to consider: the individual selection surface for per-
formance (or the selection surface for performance),
in which individual fitness is a function of individual
values for performance (Fig. 9, bottom), and the adap-
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FIG. 8. Path diagram representing the quadratic approximation (13)
to the individual selection surface for performance.

FIG. 9. The individual selection surface (lower panel) and the adap-
tive landscape (upper panel) for a single performance variable. In
the lower panel, the bottom solid curve represent the distribution,
p( f ), of the performance variable f; the upper solid curve represents
the individual selection surface, w( f ); the dashed curve represents
the quadratic approximation to the individual selection surface. In
the upper panel, loge mean fitness, ln W̄, is a function of mean
morphology, f̄, in the population. The vertical dashed line marks the
position of f̄. Note that when the mean lies at the optimum of the
adaptive landscape, as in this portrayal, there is no directional se-
lection on performance. After Phillips and Arnold (1989).

tive landscape for performance (or the performance
adaptive landscape), in which the average value of fit-
ness is a function of the population’s average values
for performance (Fig. 9, top). We can estimate the co-
efficients of the individual selection surface for per-
formance using the quadratic approximation

1
T Tw 5 a 1 b f 1 f g f 1 « . (13)w w w w2

This model is the same as (3); we are merely consid-
ering performance, f, to be the trait of interest. To fit
this model we would need data on performance and
fitness for a series of individuals in a population (Ar-
nold, 1983, 1986). bw is the average slope of the in-
dividual selection surface for performance, as well as
the slope of the adaptive landscape for performance in
the vicinity of average performance,

¯]w( f ) ] ln W
b 5 p( f ) df 5 . (14)w E ] f ]f̄

gw is the average curvature of the individual selection
surface for performance,

2] w( f )
g 5 p( f ) df. (15)w E 2] f

The curvature of the adaptive landscape for perfor-
mance (Fig. 9, top) in the vicinity of mean perfor-
mance is

2 ¯] ln W
Tg 2 b b 5 . (16)w w w 2]f̄

EVOLUTION OF THE PERFORMANCE SURFACE AND THE

ADAPTIVE LANDSCAPE

It is the adaptive landscape, in conjunction with
quantitative inheritance, that governs trait evolution,
eq. (1). In the short term, we can consider the adaptive
landscape to be a fixed entity, with constant slope and
curvature, but in the long term we need to consider
the possibility that the landscape itself might evolve.
That evolution might reflect change in abiotic condi-
tions, relationships with other species or trait interac-
tions. Before we consider landscape evolution, how-
ever, we need to consider our vision of the landscape
itself.

The most tractable vision of the adaptive landscape
is one that is restricted to the immediate vicinity of a
population’s mean (Arnold et al., 2001). This local vi-
sion is a practical one, because—as we have seen—
we can use the tool of quadratic approximation to
characterize the slope, curvature and orientation of the
landscape in the vicinity of z̄ or f̄. We can have local
visions of multiple landscapes. To visualize multiple
populations or species, we superimpose their land-
scapes and view them all at once in a space of average
trait or performance values (Arnold et al., 2001, Fig.
9). The textbook vision of an adaptive landscape dif-
fers from this local vision of individual or multiple
landscapes. A complex, rugged topography is often de-
picted in textbooks. Arnold et al. (2001) called it the
global view of the landscape, for it portrays features
near and far from the population mean. Dawkins
(1996) has called it Mt. Improbable. The quandary of
a population stuck on a local summit, down slope from
the summit of Mt. Improbable, is a carry over from
Wright’s (1931, 1932) landscape in a space of gene
frequencies. It is not clear, however, that a rugged to-
pography, and the quandries resulting from local
peaks, apply in the case of phenotypic characters.
More importantly, we have no device that can tell us
about landscape features far from the population’s av-
erage. Mt. Improbable is, after all, Mt. Unknowable.
This is the sense in which the local vision of the land-
scape is the most tractable. We have devices to give
us a local vision. But if we adopt a local vision, how
can the population ever evolve on the landscape? The
answer is that the landscape’s peak can move in evo-
lutionary time (Simpson, 1944), causing the average
trait or performance values to track that movement in
response to directional selection.

A variety of models have been proposed for the evo-
lution of the adaptive landscape (Arnold et al., 2001;
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Hansen and Martins, 1996). The simplest models all
share the feature that the curvature and orientation of
the landscape remains constant. Only the position of
the landscape’s peak evolves. With these provisos, we
can recognize four broad categories of possibilities: (a)
the peak undergoes random (e.g., Brownian) motion,
(b) peak movement is selectively constrained about a
fixed or moving point, (c) the peak moves at a con-
sistent rate and in a particular, characteristic direction,
(d) peak movement is episodic rather than steady. Ob-
viously, there are other possibilities and even the ones
listed could be combined in various ways. I want to
focus on just one possibility because of its apparent
relevance to the comparative study of performance. I
want to consider the issue of whether the peak moves
in ways that can be deduced by studying performance
within populations. Is the movement of the adaptive
landscape selectively constrained?

The position of the adaptive landscape may tend to
evolve along performance lines of least resistance. The
basis of this prediction is the proposition that the per-
formance lines of least resistance arise from funda-
mental biomechanical relationships. The major fea-
tures of the performance surface distill these funda-
mental relationships within populations. In a study of
garter snakes, for example, Arnold and Bennett (1988)
found that the performance surface that relates crawl-
ing performance to body and tail vertebral numbers
had a major axis that promoted a positive correlation
between these two parts of the vertebral column. Thus,
the snakes with the fastest crawling speeds tended to
lie close to the performance line of least resistance. A
change in vertebral numbers that moved a hypothetical
snake along the line had relatively little effect on per-
formance; a change that moved a snake off the line
lowered performance. An unknown biomechanical law
that gives a performance premium to well propor-
tioned snakes presumably underlies these results. Even
though the biomechanical law is unknown in this case,
it’s domain of operation might transcend the limits of
vertebral variation in a single population. Our proposal
is then that the peak of the performance landscape
tends to evolve along the performance line of least
resistance. Changed ecological circumstances cause
the position of the adaptive landscape to change, but
that evolutionary movement is selectively constrained
by the same biomechanical laws that prevail within
populations. A particularly evocative prospect is pre-
sented by the model of trivariate stabilizing selection
shown in Figure 4f. Movement of this surface (or its
corresponding landscape) along the selective line of
least resistance would correspond to concentric series
of pipes sliding simultaneously along their long axes.
This proposal is different from Schluter’s (1996) prop-
osition that evolution occurs along genetic lines of
least resistance. Schluter’s lines correspond to the prin-
cipal axes of the G-matrix in (1–2). See Arnold et al.
(2001) for a discussion and comparison of the two
proposals.

Can we explain adaptive radiations by movement of

adaptive (or performance) peaks along a selective line
of least resistance? In other words, is this model ca-
pable of generating the elongate clusters of population
or species means that typically characterize interspe-
cific allometry or morphospace? One point that emerg-
es from models of peak movement is that movement
along a selective line of least resistance probably must
be sustained rather than random to explain the most
common kind of patterns in trait space. For example,
consider a Brownian motion model in which trait evo-
lution is constrained in the same multivariate pattern
that constrains performance-based selection within
populations. Because movement of the peak is about
a fixed point, the long term expectation is for no cor-
relation in species or population means. For simplicity,
assume that the performance surface is the same
among all descendant populations in a radiation and
takes the form of a Gaussian surface so that

1
T 21f (z) 5 exp 2 (z 2 u ) v (z 2 u ) ,f f f[ ]2

where vf is a matrix of coefficients, analogous to var-
iances and covariances, that describes the shape and
orientation of the performance surface, and uf is the
peak of that surface. Suppose that the peak of the sur-
face undergoes selectively-constrained Brownian
movement. The peak moves as a normally distributed
random variable with mean 0 and a variance-covari-
ance matrix kvf, where k is a scalar constant of pro-
portionality (Arnold et al., 2001). Each population
tends to track its moving peak, and so, after some
elapsed number of generations, the population means
have a dispersion pattern that reflects the shape and
orientation of the performance surface. Using results
from Lande (1979) and Hansen and Martins (1996),
the covariance of population means of the populations
after t generations is

TCOV(z̄) 5 Q(t)(kv )Q (t),f

where Q(t) 5 exp[2tG(vf 1 P)21]. Under some con-
ditions this model predicts correlation in population
means. Such patterns of covariance will be aligned
with the major axes of the v-matrix, which can in turn
be estimated by the major axes of the g-matrix. These
patterns of population covariance, however, decay
very rapidly. Under plausible sets of parameter values,
the covariance in population means decays to virtually
nothing in less than 10,000 generations. Although the
peak of the performance surface undergoes Brownian
motion in a pattern that reflects the shape and orien-
tation of the selection surface, the long term expecta-
tion is for population means to be close to the original
position of the peak. In other words, Brownian motion
seems unlikely to produce elongate patterns in popu-
lation or species means. Our exploration of this model
suggests that the position of the peak must move along
selective lines of least resistance, rather than hover
about a fixed point, to produce a radiation that reflects
the within-population performance surface.
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Comparative data can be used to test for selectively-
constrained movement of the adaptive landscape. In
the ideal case, we would have estimates of the perfor-
mance surface from different populations or species.
With those data we could test for homogeneity among
populations in the g-matrix. If variation in g were not
too great, we could estimate the pattern of dispersion
of optima to see if that pattern coincides with the av-
erage line of selective least resistance within popula-
tions (i.e., with the average leading eigenvector of the
g-matrix). Such an ideal case might require estimates
of ten or more performance surfaces to accurately de-
scribe the multivariate dispersion of optima. If only
one estimate of the performance surface is available,
we might assume that mean of each population is close
to its performance optimum, and then use the disper-
sion of population means as a surrogate for the dis-
persion of optima. Comparing the leading eigenvectors
of the among-population variance-covariance matrix
and the performance surface (g-matrix) provides a test
for evolution along selectively-constrained lines of
least resistance. The garter snake test case was of this
kind and yielded remarkably strong correspondence
between the leading eigenvectors of the among-popu-
lation dispersion matrix (n 5 9 populations) and the
g-matrix for crawling speed; the vector correlation was
0.995. Thus, vertebral numbers in garter snakes evolve
along performance lines of least resistance.

The perspective that the performance surface is
curved and related to the adaptive landscape highlights
two unresolved, empirical issues: (a) What is the time
scale for the evolution of the curvature and orientation
of the performance surface? The usefulness of the per-
formance surface in understanding the evolution of
morphology depends on the evolutionary stability of
the surface. Because the surface springs from under-
lying components of the organism and their interac-
tions, it seems likely that the performance surface and
morphology evolve on the same time scale. Compar-
ative studies of surfaces could test this proposition di-
rectly. (b) What are appropriate models for the evo-
lution of the performance optimum? Evolution of the
optimum along performance lines of least resistance is
obviously just one possibility. Nevertheless, this pro-
posal represents a simple hypothesis that cuts through
the tangle of other possibilities (Emerson and Arnold,
1989). Here again, comparative studies of surfaces are
a vital step in validating our models of surface and
landscape evolution.
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