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ABSTRACT: We tested the ability of six quantitative genetic models
to explain the evolution of phenotypic means using an extensive
database compiled by Gingerich. Our approach differs from past
efforts in that we use explicit models of evolutionary process, with
parameters estimated from contemporary populations, to analyze a
large sample of divergence data on many different timescales. We
show that one quantitative genetic model yields a good fit to data
on phenotypic divergence across timescales ranging from a few gen-
erations to 10 million generations. The key feature of this model is
a fitness optimum that moves within fixed limits. Conversely, a model
of neutral evolution, models with a stationary optimum that un-
dergoes Brownian or white noise motion, a model with a moving
optimum, and a peak shift model all fail to account for the data on
most or all timescales. We discuss our results within the framework
of Simpson’s concept of adaptive landscapes and zones. Our analysis
suggests that the underlying process causing phenotypic stasis is ad-
aptation to an optimum that moves within an adaptive zone with
stable boundaries. We discuss the implication of our results for com-
parative studies and phylogeny inference based on phenotypic
characters.

Keywords: adaptive landscape, macroevolution, microevolution,
phenotypic evolution, quantitative genetic models, comparative
methods.

The common observation of evolutionary stasis (persis-
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tence of morphospecies over geological time) seems a par-
adox when juxtaposed with the observation that abundant
genetic variation is available for most traits in contem-
porary populations (Hansen and Houle 2004). The exis-
tence of prolonged stasis has been appreciated since Dar-
win (1859), who considered its prevalence, coupled with
the abrupt appearance of new species in fossil sequences,
problematic for his theory of evolution by gradual mod-
ification. The problem of stasis has been tackled from both
theoretical and empirical standpoints over the past 60 years
(e.g., Simpson 1944, 1953; Haldane 1949; Eldredge and
Gould 1972; Lande 1976; Gingerich 1983; Lynch 1990).
Recent renewed interest in evolutionary rates has high-
lighted both the prominence of evolutionary stasis and its
paradoxical nature in light of the increasing number of
cases that document rapid adaptation on short timescales
(e.g., Hendry and Kinnison 1999; Gingerich 2001; Kin-
nison and Hendry 2001; Sheets and Mitchell 2001; Hansen
and Houle 2004).

Despite this long history of interest, no generally ac-
cepted consensus has been reached regarding the likely
cause of stasis. Underlying factors proposed to account for
stasis on a geological timescale include protracted periods
of stabilizing selection (Charlesworth et al. 1982; Lynch
1990), genetic and developmental constraints (Hansen and
Houle 2004; Blows and Hoffmann 2005), competition for
resources, selective constraints due to coevolution (re-
viewed in Mayr 2001, chap. 10), canceling of “positive”
and “negative” evolutionary trajectories over time (Stanley
and Yang 1987; Gingerich 2001), mathematical artifact
(Bookstein 1987; Roopnarine 2003), habitat selection (Par-
tridge 1978), and complexities involved with evolution in
metapopulations (Eldredge et al. 2005). Despite this di-
versity of proposals, we accept the arguments of Charles-
worth et al. (1982) that stabilizing selection is the most
likely explanation for stasis. Attempts to use genetic con-
straints, for example, as a universal explanation for stasis
confront several difficulties. First, genetic studies of natural
populations have usually revealed ample quantitative ge-
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netic variation for most kinds of traits, although much of
this variation may be deleterious in any given environment
(Lynch and Walsh 1999, chap. 12; Blows and Hoffmann
2005). Second, contemporary populations routinely
mount rapid evolutionary responses to changing environ-
mental conditions (reviewed in Kinnison and Hendry
2001; but see Bradshaw 1991; for a fossil example, see
Bunce et al. 2005). Third, while genetic constraints on
evolution exist and can affect evolution in the short to
medium term, these constraints can evolve and so are
unlikely to account for the lengthy periods of stasis that
characterize many fossil lineages (Charlesworth et al.
1982). In other words, populations are often well equipped
genetically to respond to at least short-term ecological
challenges, refuting the notion of omnipresent, internal
constraints on evolution. For these and other reasons (for
discussion, see Charlesworth et al. 1982), stabilizing se-
lection emerges as the leading contender among expla-
nations for stasis. Although stabilizing selection is un-
doubtedly an ingredient in the production of stasis, we
need to move to the next stage and examine the power of
alternative processes of stabilizing selection to explain di-
vergence data.

Most studies of stasis have focused on the evolutionary
pattern without investigating the processes that produce
that pattern. Most data on evolutionary rates have been
summarized without reference to models, so little insight
is gained into the causes of stasis. In those instances in
which models are employed, they are often ad hoc models
with arbitrary parameters that have no direct connection
to studies of evolutionary processes (e.g., Bookstein 1987;
Gingerich 2001; Kinnison and Hendry 2001). Such models
are capable of producing stasis, but one cannot determine
whether the parameters employed are consistent with em-
pirical studies of inheritance, selection, and population
size. Furthermore, the quantification and study of evo-
lutionary rates have been fraught with both semantic and
statistical difficulties (Brock 2000, chap. 18; Kinnison and
Hendry 2001; Roopnarine 2003; Hansen and Houle 2004;
Eldredge et al. 2005), culminating in a recent suggestion
that few, if any, useful inferences regarding long-term evo-
lutionary pattern or process have yet been drawn from
even extensive compilations of rate data (Roopnarine
2003). This pessimistic view arises in part from a general
failure to connect empirical studies of evolutionary rates
of divergence with the most meaningful models of evo-
lutionary change—those with ties to evolutionary genetics.
Ironically, the empirical concentration on evolutionary
rates, rather than on divergence, has thrown data analysis
out of register with the most informative models of evo-
lutionary process. In contrast to these classes of failure,
quantitative genetic models have been successfully used to
analyze particular instances of phenotypic evolution

(Lande 1976; Lynch 1990; Hansen 1997), often rejecting
neutrality in favor of stabilizing selection. Nevertheless,
the quantitative genetic models that have been produced
over the past 30 years have generally been applied piece-
meal to one or a few case studies. It is fair to say that
most models have not experienced serious encounters with
data. Consequently, our goal is to compare the utility of
the entire range of quantitative genetic models so far pro-
duced by moving beyond the analysis of individual cases.
In particular, we use Gingerich’s (2001) extensive com-
pilation of divergence data to explicitly test alternative
explanations of stasis.

Surveys of phenotypic evolution often reveal rapid
change on short timescales but stasis on long timescales.
While net evolutionary divergence within lineages gen-
erally increases with time, the average evolutionary rate of
change is remarkably slow (Kinnison and Hendry 2001).
In nature, many lineages show little or no net divergence
in numerous phenotypic traits over timescales ranging
from 10° to 10° generations. Extreme examples are pro-
vided by the so-called living fossils (e.g., coelacanths,
bracken ferns, millipedes, horseshoe crabs). In other cases,
directional change occurs over shorter timescales but is
later canceled by evolution in the opposite direction, so a
relatively stationary mean phenotype is maintained in the
long term. An example of this phenomenon, termed “zig-
zag evolution,” is provided by Stanley and Yang’s (1987)
observations of morphological change for three lineages
of Pliocene bivalves. While an overall pattern of stasis is
a common finding in analyses of fossil data series, as dis-
cussed by Simpson (1944, 1953), a universal attribute of
such time series is that they reveal considerable fluctua-
tions in average phenotypes on the smallest resolvable
timescales. We shall discuss this phenomenon in light of
our findings and in terms of Simpson’s (1944) concept of
adaptive landscapes and zones.

Our general aim is to focus on the broad picture of net
evolutionary divergence accumulating in lineages over time
and determine whether a single model of evolutionary pro-
cess can account for the overall pattern of divergence on
all timescales. By using explicit genetic models of divergence,
we hope to reveal the microevolutionary underpinnings of
stasis. This article has two immediate goals. First, we wish
to determine whether a single model of evolutionary process
can account for the tempo of evolution on all timescales.
Second, we wish to determine whether such a best-fitting
model can be found in which parameters are in register
with estimates of inheritance, selection, and population size
from contemporary populations.

Data

We used the database of 2,639 “microevolutionary,” “his-
torical,” and paleontological evolutionary rates compiled



by Gingerich (2001; plotted in his figs. 1, 83-8D) for our
analyses. This database consists of a sampling of divergence
for various characters in a wide range of taxa (e.g., plank-
tonic foraminiferans, ceratopsid dinosaurs) over timescales
ranging from 1 to 10 million generations from 44 sources.
These historical and paleontological data represent diver-
gence calculated for various morphometric characters
(e.g., shell size and shape); microevolutionary divergence
was calculated for a mix of morphological, behavioral, and
life-history characters (e.g., see table 1 in Hendry and
Kinnison 1999). We omitted rates estimated from labo-
ratory experimental evolution studies (i.e., those from
Gingerich’s [2001] fig. 8A) so that all divergence rates
represent instances of evolution in nature. The Gingerich
(2001) data were expressed as evolutionary rates, reported
in Haldane units and corresponding time intervals (in
generations). The Haldane rate is D/I, where D is the dif-
ference between two sample means divided by the pooled
standard deviation of the samples and I is the time that
has elapsed between the samples in generations (Gingerich
1983). Using the Gingerich data, we calculated total mor-
phological divergence, D, and plotted this against the cor-
responding time interval, I (fig. 1A). Because of the com-
pression in divergence values on the raw scale, we followed
Gingerich (2001) and Kinnison and Hendry (2001) and
expressed the divergence data on the log,, scale (fig. 1B).
For each of these plots, we estimated a 99% confidence
ellipse for the bivariate mean (fig. 1). These ellipses define
a band of acceptability for assessing the performance of
each model. In other words, when the predictions of a
model fall outside this band, we can be reasonably sure
that those predictions are rarely met in nature.

As in most paleontological data, the Gingerich data set
contains a mix of both allochronic (within-lineage) and
synchronic (between-lineage) data. Contamination with
between-lineage values inevitably arises when an unde-
tected second lineage invades the site of sampling and
replaces the first lineage. The effects of this kind of con-
tamination on our analyses are probably minor for two
reasons. First, dramatic instances of one lineage replacing
another will appear as a sudden, large spurt in divergence
and will be excluded from the confidence ellipse on that
basis. Second, when less dramatic instances of lineage re-
placements are inadvertently included, the effect will be
to average divergence across lineages. This latter effect may
eliminate some extreme values from the total sample, but
it is not likely to change our band of acceptability. We also
note that the individual data points in figure 1 are not
independent. When a long time series was available, Gin-
gerich (2001) took multiple but nonoverlapping samples
from that series. Nevertheless, the resulting sampling co-
variance should not complicate our results because the
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Figure 1: A, Plot of divergence as a function of time interval. Divergence
is measured as the difference between the average trait values of an
ancestral and a descendant population, expressed in units of pooled phe-
notypic standard deviation. The slope of the fitted regression line is 0.2407
(SE = 0.0268), P<.0001. B, Plot of log,, absolute divergence on log,,
time interval. The slope of the fitted regression line is 0.0437 (SE =
0.0070), P<.0001. In both plots, time interval is measured in number
of generations on a log,, scale. The broken lines show the boundaries of
the 99% confidence ellipse for the data. The data (n = 2,639) are from
Gingerich (2001). The fitted slopes are equivalent to 0.84 phenotypic
standard deviations per million generations on a raw scale.

confidence ellipses in figure 1 are used only for graphical
comparisons with model predictions.

We also calculated the effect of errors of measurement
on our mode of analysis. Error is especially likely in the
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estimation of both phenotypic divergence and time inter-
val on a geological timescale. Errors of these kinds arise
because of small sample sizes and methodological errors
in dating. As upper bounds on the log,, scales, we assumed
that all such sources of error might have inflated the var-
iances in both divergence and time interval by as much
as 50%. We recomputed the 99% confidence ellipse after
subtracting the inflated portion of the variance on both
axes and obtained a new ellipse (without inflation) that
was nested inside the original 99% ellipse. This new ellipse
is almost exactly comparable to a 95% confidence ellipse
calculated without assuming inflation of bivariate variance
(see zip archive in the online edition of the American
Naturalist). In other words, even appreciable measurement
error would have a minor effect on the boundary of the
confidence ellipse that we used in assessing the fits of the
various process models. Consequently, error of measure-
ment is unlikely to have affected our conclusions.

Theoretical Background

We have two aims in the sections that follow. First, we
introduce the measures of inheritance and selection (h?
0, w?) that are used in the models and show how these
selection parameters are related to commonly estimated
parameters of selection (3, ). The connection between 6
and w’, on the one hand, and 3 and v, on the other, is
embodied in the concept of the adaptive landscape, which
we briefly review. Second, we introduce the models them-
selves and show how their predictions can be brought into
register with Gingerich’s (2001) data.

We use a series of quantitative genetic models developed
by Lande and colleagues to analyze and interpret data on
divergence in morphological characters (Lande 1976, 1985,
1986; Lynch and Lande 1995; Lande and Shannon 1996).
These models are based on a theory of stochastic processes
originally devised to account for Brownian motion and
the diffusion of particles through a permeable membrane
(Karlin and Taylor 1981, chap. 15). The models predict
how much the mean of a phenotypic trait is expected to
change over a specified number of generations. To make
this prediction, aspects of inheritance, selection, and pop-
ulation size are held constant. Stochasticity arises in the
models from finite population size. Because the population
is finite, accidents of parentage introduce random variation
in the trait mean so that it tends to fluctuate or drift from
generation to generation. The statistical properties of this
random variation can be specified. Imagine a set of rep-
licate populations derived from the same ancestral pop-
ulation and maintaining the same parameters of inheri-
tance, selection, and size. Stochastic process theory allows
us to specify the variance among populations in their trait
means after some number of generations have elapsed.

Under some models, this variance in means is ever in-
creasing, but in others, it reaches and then maintains a
stable value. In either case, we can use the variance formula
to compute a standard deviation, and hence a confidence
limit, about the expected mean. In summary, each genetic
model predicts how much divergence can be expected after
t generations and how much variation can be expected
about that average. Those expectations can then be com-
pared with the observed amounts of divergence to deter-
mine whether the model and a particular set of parameter
values are capable of accounting for the data.

All of the models that we will use rely on a common
set of simplifying assumptions. We restrict our focus to
the case of a single, continuously distributed phenotypic
character, because virtually all of the relevant empirical
data are in a univariate format. The character z is assumed
to be normally distributed (or to have been transformed
to normality) with mean z and phenotypic variance ¢°
before selection. Inheritance is characterized by a herita-
bility h*. We will assume that the additive genetic variance
of the character, h’c®, remains constant even over long
stretches of evolutionary time because of a balance among
the forces of selection, drift, mutation, and/or migration
(Jones et al. 2003, 2004). We also assume that selection
favors an intermediate optimum phenotype 6 and can be
characterized by a Gaussian function such that the ex-
pected fitness of an individual with phenotype z is given
by

W(z) = exp 2k 0)2], 1)

2w?

where w is the width of the Gaussian function; w? is anal-
ogous to a variance. Corresponding to this individual se-
lection function is an adaptive landscape that relates av-
erage fitness in the population to the mean of the
phenotypic character. This landscape is also a Gaussian
function with an optimum at 6 and a “variance” of
w?+ o*

(z—0)
2(w* + 0?)

W o exp (2)

(Lande 1976, 1979). The strength of stabilizing selection
is readily visualized with these formulations. For example,
if we standardize a character so that it has unit standard
deviation (o0 = 1), then stabilizing selection is easily vi-
sualized as a normal curve with a width (“standard de-
viation”) that is some multiple of o. Thus, w* = 99 cor-
responds to very weak stabilizing in which the width of
the adaptive landscape, (w> + ¢%)"?, is 10 times wider than
the character distribution. At the other extreme, w” = 1



corresponds to very strong stabilizing in which the width
of the adaptive landscape, (w* + ¢°)"?, is 2'> = 1.4 times
wider than the character distribution.

Standard measures of selection can be obtained by tak-
ing the first and second derivatives of the landscape with
respect to the character mean. Thus, the first derivative,
or slope of the landscape, evaluated at z is

dln W
B =

— = (w?+ 0) 70 — 2), (3)
dz

a measure of directional selection (Lande 1979, 1980). The
second derivative, or curvature of the landscape, evaluated
at z is
’In W
0z’

= —(@+ o), @

a measure of stabilizing selection (Lande 1979). An im-
portant consequence of assuming normality of the char-
acter distribution and a constant Gaussian form for the
selection function is that, under most of the models we
will use, one can specify the distribution ®(z,) of character
means for a set of replicate populations at any generation
in the future.

The first and second derivatives of the adaptive land-
scape, 8 and H, can be estimated by making a quadratic
approximation to the individual selection surface, which
in the univariate case is

1

W) =1+ pBz+ 5 vz%, (5)

in which individual fitness W(z) has been transformed so
that its mean is 1 and trait values z have been transformed
so that the mean is 0 and variance is 1 (Lande and Arnold
1983). The strength of the direct effects of quadratic se-
lection is described by v, the standardized quadratic se-
lection gradient. Assuming that the individual selection
surface is approximately Gaussian, one can estimate w’
using equation (4):

—(w*+ o) =y—p° ©6)

(Phillips and Arnold 1989; the derivation of this result is
available in the zip archive). The distance from the char-
acter mean to the optimum can be estimated using the
formula

20 = ‘_ﬂ, o)
Y
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assuming that a quadratic function gives a reasonable ap-
proximation to the individual selection surface (Phillips
and Arnold 1989, their eq. [11]). We now turn to quan-
titative genetic models that are cast in terms of these pa-
rameters. The models are described in detail by the cited
authors. The behavior of the models can be visualized
using a PowerPoint presentation available in the zip ar-
chive. A spreadsheet showing how numerical evaluations
of the models were compared with data is provided in the
same zip archive. Our aim here is to review the expressions,
derived from these models, for expected divergence as a
function of time and the variation that is predicted about
those expectations.

Neutrality

In a population of effective size N,, in the absence of
selection, the variance created each generation by drift
among replicate populations is h’c*/N,. After t genera-
tions, the replicates derived from a common ancestor at
t = 0 with an initial mean phenotype of z, = 0 will be
normally distributed about a mean of 0 with a variance
of

h*o’t

Var(z) = 8)

e

(Lande 1976; fig. 2). A different model of neutral evolution
has been proposed by Lynch and Hill (1986), in which the

(z,)

1
A
'
(38 ]
| ©4
N
B

N

Figure 2: Divergence in phenotypic mean under neutrality. Beginning
at time 0, a series of replicate populations diverge due to drift. The curves
show the distribution of phenotypic means, ®(z,), after different intervals
of time have elapsed. The variance of such a distribution at generation
t is Var(z,). From the uppermost to the lowermost curve, the elapsed
intervals are 200, 1,000, 5,000, and 20,000 generations. The scale on the
X-axis is in units of phenotypic standard deviations. Heritability is 0.4,
and N, = 1,000.
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variance given by equation (8) is the product of mutational
variance, 0., and t. With respect to testing, the models are

comparable in the sense that one assumes that either
h?’6*IN, or o7 is constant over time (Lynch 1990).

m

Displaced Optimum

Consider the case of a population of effective size N, evolv-
ing in response to the adaptive landscape described in
equation (2) (Lande 1976). Let the mean of the phenotypic
character at generation 0 be z. Now suppose that the
optimum is displaced some distance from z,. The initial
distance from the mean to the optimum is (z, — 6), and
for mathematical convenience, we can let the displaced
optimum take a value of 0 (fig. 3). After some number of
generations f, the expected value of population means,
E[z], will have approached the optimum, so that

h*o?
w? + o?

t|. )

E[z] = zexp

If we consider a series of replicate populations with these
same characteristics at generation ¢, they will deviate from
this expectation because of the stochasticity induced by
finite population size. The replicates will be normally dis-
tributed about E[z] with a variance given by

t” (10)

After many generations, the expected value of the phe-
notypic mean will coincide with the optimum, and the
dispersion of the replicate populations will achieve a con-
stant variance of (w® + ¢°)/2N, (Lande 1976; fig. 3). This
constant variance is a manifestation of an equilibrium be-
tween drift, which tends to cause divergence among rep-
licates, and stabilizing selection, which tends to pull rep-
licate means toward the optimum.

w2+02 2 2

2N,

e

Var (z,) = 1 —exp|—2

w?+ o’

Brownian Motion of Optimum

Next, consider the situation in which the optimum, 6,
undergoes Brownian motion but with no long-term
change in the expected value of its mean position. In other
words, the position of the optimum at generation ¢+ 1 is
normally distributed with a mean equal to 6, and a variance
g, and with the variance among replicates accumulating
through time, so that at generation f it is to,. As in the
preceding model (Lande 1976), the trait experiences sta-
bilizing selection in any given generation as well as direc-
tional selection proportional to the distance between the
trait mean, z, and the optimum. Letting the trait mean

w 0
t=25 '
t=100
d(z,) t= 200 e
T _/ T T :l T
-6 -4 -2 0 2
Z

Figure 3: Divergence in response to a displaced optimum. The top panel
shows an adaptive landscape with an optimum that has been displaced
5 phenotypic standard deviations from the phenotypic mean, shown as
a vertical line. The bottom panel shows the distribution of phenotypic
means, ®(z,), after different intervals of time have elapsed, as populations
evolve in response to the displaced optimum. Heritability is 0.4, »* =
99, and N, = 50. Other conventions as in figure 2.

initially coincide with the position of the optimum, so that
z, = 0, = 0, after some number of generations, f, the ex-
pected value of the population mean will coincide with
the long-term expectation for the optimum, so that
E[z] = E[f] = 0. The replicates will be normally distrib-
uted about 0 with a variance given by

t]} (11)

h*e?

w’+ o?
w?+ o’

2N,

e

Var (z,) = to; + 1 —exp|=2

Moving Optimum

A simple way to introduce perpetual directional selection
is to assume that the optimum moves at a constant rate
k. We will also allow for an element of stochasticity by
allowing motion with variance g; each generation about
the trend line for 6. In other words, the optimum at gen-
eration tis §, = kt + g,, where g, is normally distributed
with no correlation in time and with mean 0 and variance
;. In contrast to the preceding model, the movement of
the optimum about the trend line is a Gaussian white noise
process, so that the variance that the process contributes
to z,does not increase linearly with time (Biirger and Lynch
1995; Lande and Shannon 1996; Biirger 2000). Eventually,
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Figure 4: Diversification among replicate populations at generation ¢
under the moving optimum model. The top panel shows the expected
position of the optimum, 6,. The bottom panel shows the distribution
of phenotypic means, ®(z,). The expected phenotypic mean lags so very
slightly behind the optimum at generation t that it appears to be su-
perimposed on the optimum. Heritability is 0.4, > = 10, N, = 1,000,
k = 0.001, and o; = 0.001. Other conventions as in figure 2.

a balance is achieved between selection and drift, but in
general, at generation ¢t the expected character value in a
series of replicate populations is normally distributed with
a mean of

) w? + ¢? h’o?
Elz] = kt — k(W 1 —exp|—|— g t” 12)
and a variance of
Var(3) = w’ + o’ h’o’a, ”1 B 5 h*e® ,
WEHZITN, 2o Pl v o2
(13)

(Lynch and Lande 1995, their eqq. [14], [15]; fig. 4). When
k = 0, this model describes the evolution of a character
in response to an optimum that fluctuates in position
according to a Gaussian white noise process.

Peak Shift

In all of the preceding selection models, the evolving mean,
z, tracked a single stationary or moving optimum. In peak
shift models, the character mean evolves in response to
two adaptive peaks (Barton and Charlesworth 1984; Lande
1985, 1986). The two peaks may differ in height and are
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separated by an adaptive valley (fig. 5). A population of
finite size spends most of its time in the vicinity of one
adaptive peak, but it may drift into the valley, against the
force of selection, and then be attracted to the second peak.
Remarkably, the expected time for the population to evolve
from the vicinity of the first Gaussian peak to the second
Gaussian peak is virtually independent of the distance be-
tween the two peaks. The expected time T does, however,
depend on the height of the first peak, W, and the height
of the valley, W, so that

2N
T e 2m(w* + 0?) %
B h’o? W

v,

, (14)

assuming that the curvature in the vicinity of the peak is
comparable to the curvature at the valley (Lande 1985,
1986). In this model, w® + ¢ is the “variance” of the first
adaptive peak. The rate of peak shift is 1/7, so in f gen-
erations, the expected number of replicates making the
shift is #/T. We may treat peak shifting as a Poisson process
(Bailey 1964). Thus, if we suppose that the two peaks are
separated by a distance d, after t generations, a proportion
p = exp (—t/T) of populations in a set of replicates will
still reside on the first adaptive peak, while another pro-
portion, 1 — p, will have moved to the second peak. We
assume that the second adaptive peak is at least 10% higher
than the valley (W,/W, > 1.10), so that shifts from the
second peak back to the first can be ignored. The expected
amount of evolution will be

R < ——

t|

Figure 5: Adaptive landscape in the peak shift model, which has two
adaptive peaks, a and b. Mean fitness W is a function of the average
phenotype in the population, z. Two critical parameters in the peak shift
model that affect the probability that the population mean will shift from
peak a (left) to peak b (right) are the height W, of the first adaptive peak
and the height W, of the valley v separating the first adaptive peak from
the second. The distance between the two peaks (between points a and
b) is d.
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Figure 6: Example fits of neutral (A), white noise (B), Brownian motion of the optimum (C), displaced optimum (D), moving optimum (E), and
peak shift (F) models to the divergence data. Heavy dashed lines in each panel represent the 99% confidence ellipse for the divergence data of
Gingerich (2001). If model predictions fell within this ellipse, we considered the fit to the data acceptable. To illustrate how each model responds



E[z] = d0 — p), (15)
assuming that the phenotypic value of a population mean
directly under the first peak, at g, is 0. Let the “variance”
of the second adaptive peak be the same as the first. The
variance among replicate means at generation t, composed
of a between-class variance and an average within-class
variance, will be approximately

Var(z) = pzi + (1 — pd—2z)* +

(w*>+ 0?)
N (16)

e

Methods
Implementation of Models

Stochastic models for evolution are often fitted to actual
data by making calculations or simulations on a particular
phylogeny for which data on phenotypic means are avail-
able at the tips of the tree (e.g., Hansen 1997; Schluter et
al. 1997; Butler and King 2004). We did not take this
approach. The data we used are for particular lineages that
have been followed through time, obviating the need for
a phylogeny. Furthermore, we treated the data en masse
and defined the limits of observed divergence as a function
of elapsed time (fig. 1). For each stochastic model, we
simply asked whether predictions could fall within those
observed limits under realistic parameters of inheritance,
selection, and population size. The procedure can be
thought of as a screening test. An advantage of our pro-
cedure is that we can screen models over a relatively large
range of timescales (from 1 to 10,000,000 generations).
Detailed model-fitting exercises usually examine model
performance over a small fraction of this range.

To test the adequacy of each of the models, a realistic
range of parameter values was systematically searched and
the adequacy of each combination evaluated simply by
assessing whether the predicted pattern of morphological
divergence with time fell within the 99% confidence ellipse
for the actual data (fig. 6). The search was conducted in
a graphical way. We used a spreadsheet to calculate ex-
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pected values for divergence as a function of elapsed time.
To assess the fit of that curve to actual data, we super-
imposed the curve on the 99% confidence ellipse for the
data, shown in figure 1 (spreadsheets used for model fitting
are available in the zip archive). In nearly all instances, it
was a simple matter to assess the fit. Either the curve fell
inside the data ellipse over the entire timescale or it did
not (fig. 6). To determine the sensitivity of the fit to var-
iation in a particular parameter, we systematically varied
the value of that parameter on the spreadsheet and ob-
served the corresponding effect on the fit to the data. Note,
however, that a model can fail for a second reason. Some
models predict no divergence over a wide range of pa-
rameter values. Thus, under these conditions, the models
fail because they fail to account for the wide range of
divergence values shown by actual data (fig. 1).

Because we employed stochastic models of phenotypic
evolution, each model predicts a range of values for di-
vergence for any particular set of parameter values and
divergence time. To visualize this variation about expected
divergence, we computed the upper and lower 95% con-
fidence limits using the standard formula, which assumes
a normal distribution. To obtain confidence limits on the
log,, scale for expected morphological divergence, we first
employed the approximation from Wright (1968, eq.
[10.42]) to estimate the variance of morphological diver-
gence on the log,, scale: 6> = 0.4343log,, (1 + C?), where
C = 0o/zis the observed coefficient of variation, the stan-
dard deviation divided by the mean, on the untransformed
scale. This formula requires the assumption that the dis-
tribution of divergences is normal on the transformed
scale, an assumption that is necessarily true by the nature
of the models. Because the expected amount of divergence
for the neutral model is 0 on the raw scale, we evaluated
divergence under this model on the untransformed rather
than the log scale. In our graphical tests of model per-
formance, we used our spreadsheet to compute the 95%
confidence limits for expected divergence as a function of
time. These confidence limits were then superimposed on
the data ellipse, along with the expected values predicted

to varying parameter values, a single parameter for which each model was found to be highly sensitive was varied within a realistic range, and three
example fits are shown. Solid lines represent the model prediction, that is, amounts of expected evolutionary divergence (or log,, divergence where
noted) in units of phenotypic standard deviations (or log,, phenotypic standard deviations) under the stated parameter values. For the neutral,
white noise, and Brownian motion models (A-C), predicted net divergence is 0 across all timescales. The dotted lines in those panels represent the
95% confidence limits on either side of the prediction for each value of N, shown. The 95% confidence limits for model prediction were used in
assessing the fit to the data but are not shown in D-F. On the scales illustrated in this figure, the lines representing the confidence limits in these
cases are, in most cases, extremely close to the model predictions. For the peak shift model (F), peak shifts rarely occur when N, > 200, and as a
consequence, there is virtually no divergence. Unless otherwise noted, central parameter values are used: N, = 1,000, i’ = 0.4, »w* = 3.214. For the
moving optimum model, ; = 0.0001. For the peak shift model, the distance between the two adaptive peaks is d = 10, W, = 1.01, and W, =

1.00.
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Table 1: Values of parameters of population size, inheritance, and selection that were used to assess model performance

Parameter Symbol  Range evaluated Reference(s)

Effective population size N, 10-100,000 Barrowclough 1980; Begon et al. 1980; Husband and Barrett
1992; Jorde and Ryman 1996; Storz et al. 2001; Turner et
al. 2002

Trait heritability w .0001-.9 Mousseau and Roff 1987

Strength of stabilizing selection o’ 3-50 Kingsolver et al. 2001

Distance to the optimum |z— 0| .01-10 Kingsolver et al. 2001

Note: The range of values that was explored (range evaluated) is based on surveys of empirical studies conducted by authors indicated in the last

column. The calculation of |z — 6] is described in the text.

by the model (see the zip archive for spreadsheets and
superimposed graphs).

Model Parameter Values

We employed realistic ranges of parameter values for in-
heritance, selection, and population size to evaluate each
model (table 1). Values for narrow sense heritability (h?)
were chosen such that the majority of the range of such
estimates (n = 570) for morphological characters re-
viewed by Mousseau and Roff (1987) was represented
(h* = 0.001-0.9). The median heritability for morpho-
logical traits was 0.43, while that for life-history and be-
havioral traits was 0.25 and 0.28, respectively (table 1 in
Mousseau and Roff 1987).

Constraints on the rate and direction of evolution can
be produced by lack of appropriate genetic variation and
by the effects of pleiotropic gene action, at least in the
short term (e.g., Bradshaw 1991; Arnold 1992). By im-
posing a very small value for heritability (h*> = 0.001), we
evaluated the effect of strong genetic constraints on di-
vergence in each model.

The strength of stabilizing selection (w*) and distance
of the character mean from the optimum (|z — 6]) were
estimated from data on § and 7 given at the Web site
associated with Kingsolver et al. (2001), using equations
(4) and (6) (table 2). We used only those cases in which
both B and v had been estimated from the same data. We
also omitted 17 cases in which the reported value for v
was 0 to avoid division by 0 in the calculation of w”. Finally,
we omitted two extreme outliers on either side of the
distribution of w’. Most values of w’ in contemporary
populations are in the range —50 to 50, with a strong
mode at about 3 (fig. 7). Large negative values correspond
to weak disruptive selection, and large positive values cor-
respond to weak stabilizing selection. We note that a pe-
culiar property of the w” scale is that, in the vicinity of 0,
going from positive to negative values, selection changes
from strongly stabilizing to strongly disruptive. Neverthe-
less, more than 60% of the observed w” values are positive,
indicating stabilizing selection, and of these w’< 20 in

76% of cases. Consequently, we focused on w’® = 3-50,
corresponding to w = 1.7-7.10 in our calculations. In cal-
culating |z — 6| using equation (7), we used only those
cases in which v was negative (downward curvature) and
excluded one large outlier, yielding a sample of 197 cases.
In model implementation, we focused on the most fre-
quently encountered range of values for |z — 6|, namely
0.01-100, centered about a modal value of <1 phenotypic
standard deviation (fig. 8).

We chose a range of values for effective population size
on the basis of a review of empirical estimates from a
variety of organisms not considered to be rare or endan-
gered (e.g., Drosophila subobscura, modern humans). Or-
ganisms that were sufficiently abundant in the fossil record
to estimate character means and variances must have had
large populations. Nevertheless, the effective size of a pop-
ulation can often be considerably smaller than the census
size (e.g., Frankham 1995; Turner et al. 2002). We therefore
used a central value of 1,000 but evaluated models over a
broad range (N, = 10-100,000).

The peak shift model requires the ratio of two additional
parameters, average population fitness at the original adap-
tive peak, Wﬂ, and in the valley between the two adjacent
peaks, W, (fig. 5). No explicit estimates of W /W, exist for
any system. Following Lande (1985), we assumed that the
adaptive peak was 1%—-5% higher than the valley, so that
W/W, = 1.01-1.05.

Table 2: Descriptive statistics for curvature of the adaptive land-
scape (H), the strength of stabilizing/disruptive selection (w?),
and the absolute distance of the phenotypic mean from the op-
timum (|z—6])

H ’ |z— 8|
Mean (SE) —.108 (.022) 11.29 (6.462) 3.873 (1.293)
Median —.043 1.676 1.100
Mode .020 3.214 <1.000
Minimum —2.576 —230 0
Maximum 1.916 1,735 238
N 355 355 197

Note: Statistics calculated from the database of Kingsolver et al. (2001).
The mode of the w” distribution was evaluated with bins 5 units wide.
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Figure 7: Strength of stabilizing/disruptive selection in natural popula-
tions (n = 355). Values of w” were calculated from the database of King-
solver et al. (2001). To improve visualization, in this graph the distribution
was truncated at =200 (12 extreme values were omitted).

Under the moving optimum model, the rate of peak
movement, k, could be equated with the rate of character
evolution, but the degree of stochasticity in peak motion,
0;, is an unknown parameter. A large value of g; is bio-
logically untenable because it will promote extinction of
the population (Lynch and Lande 1995). In particular, if
0, > w, the population runs a high risk that the optimum
will fluctuate so far from the population mean that the
resulting decrement in mean fitness will result in extinction
(Biirger and Lynch 1995). Viewing this argument on a
geological timescale means that the condition 0, < o will
be necessary for population persistence. We therefore em-
ployed a variety of values for both of these parameters in
the ranges k = 107°-0.10 and o¢; = 107°-0.10, corre-
sponding to moderate rates for peak movement and mod-
est variation in the position of the optimum.

We began our evaluations of each model using a set of
central values for common parameters (N, = 1,000,
h* = 04, w> = 3.214) and then systematically varied these
and other parameters over the entire range of feasible val-
ues. Other methodological details are provided in the
spreadsheet available in the zip archive.

Results
Pattern of Morphological Divergence

Although average morphological divergence increases with
time (fig. 1), the net rate of evolution is remarkably slow,
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as has been observed in previous studies (e.g., Lynch 1990;
reviewed in Kinnison and Hendry 2001). In fact, the ob-
served pattern is consistent with an average divergence of
842 x 1077 phenotypic standard deviations per genera-
tion, or only 0.84¢ over a million generations (fig. 1A).
This rate is nearly six orders of magnitude slower than
rates commonly observed in selection experiments (Lynch
and Walsh 1999). This discrepancy shows that some sort
of restraint acts on evolutionary divergence in the natural
world (e.g., stabilizing selection, genetic or functional con-
straints). To explore the potential underlying causes of this
result, we evaluated the ability of a series of quantitative
genetic models to explain the pattern of divergence evident
in the empirical data.

Neutrality

We find that a model of neutral evolution fails to account
for the empirical data across all timescales. We evaluated
divergence under this model on the raw scale (fig. 1A)
because the expected average divergence is 0 for this model
(fig. 2) and so is undefined on the log scale. Neutrality
consistently fails for shorter time intervals by predicting
too little divergence (fig. 6A). Conversely, neutrality con-
sistently fails for longer timescales because the model pre-
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Figure 8: Distance of the phenotypic mean from the intermediate op-
timum, 6, in natural populations (n = 197). Values of |z — 6|, the ab-
solute distance from the phenotypic mean to the optimum in units of
phenotypic standard deviations, were calculated from the database of
Kingsolver et al. (2001). The first bin shows the number of observations
within 1 phenotypic standard deviation of the optimum, the second bin
shows the number within 2 but >1 phenotypic standard deviation from
the optimum, and so on. Two values >40 were dropped from the plot.
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dicts far greater changes than those observed in the fossil
record. The exact time intervals for failure depend on the
combinations of values for h*> and N, employed in the
model. As heritability increases, the confidence intervals
about expected mean divergence quickly become very
large. The opposite situation occurs with increasing N.. As
N, increases, the model fails to predict the range of di-
vergence values observed over relatively short intervals of
time. While extremely low values for h* do serve as a
constraint on evolution, substantial amounts of morpho-
logical divergence change can still occur over geological
time—much greater than those observed in the fossil
record.

Displaced Optimum

A model involving a displaced phenotypic optimum pro-
vides a good fit to Gingerich’s (2001) data across all time-
scales for a range of parameter combinations. This model
performs very well indeed when median parameter values
from the literature are employed. For example, with small
shifts in the optimum (| z, — 6| < 6) and strong stabilizing
selection (w® = 3.214), predicted divergence almost ex-
actly matches the observed mean change (figs. 6D, 1B).
This model is most sensitive to variation in optimum dis-
placement |z, — 6| and, when employing central values
for the other parameters, will provide a reasonable fit to
the data only in the range 0.3 < |z, — 0| < 6. The predicted
dynamical pattern of divergence is almost always curvi-
linear such that if the model fails, it is because the model
predicts too little divergence evolution on short timescales.
When the optimum is displaced from the population mean
much beyond 60 (i.e., when |z, — 0| > 6), model failure
due to overestimation of evolutionary divergence on nearly
all timescales becomes common under a wide range of
values for other parameters. Additionally, under this
model, low values of heritability can act as effective con-
straints on evolutionary change. For any parameter com-
bination, the model yields a poor fit to the data unless
h* > 0.01. Finally, it is noteworthy that for any particular
set of parameter values this model tends to explain only
a modest portion of the total variance in observed rates
of evolutionary divergence. (This limitation does not nec-
essarily hold when N, is very small.) However, reasonable
parameter combinations can be found that sweep the
curves for the expected mean divergence across the entire
99% data ellipse. Combinations that drive the expectation
near to the upper boundary of the ellipse include those
in which |z, — | is “large” (around 6) and #* > 0.1. For
the expected divergence to be near the lower boundary of
the data ellipse, |z, — 6| must be small (less than 0.1)
regardless of the other parameter values employed.

Moving Optimum

In the case of a moving phenotypic optimum, the amount
of predicted divergence is too little on short timescales,
while that predicted for longer timescales far exceeds em-
pirical observations for all reasonable parameter values
(fig. 6E). The most favorable conditions are provided by
central values for w” and 4’ providing that the rate at
which the optimum moves is extremely slow (k= 107" o/
generation). Even under these most favorable conditions,
however, the model fails to match empirical observations.
The model is exceedingly sensitive to k, and unless the
values employed for these parameters are minuscule, the
model predicts evolutionary change that is orders of mag-
nitude too large across all timescales. However, if kis much
smaller than 107, the model projects levels of divergence
slower than observed values except over the longest time
intervals. Conversely, this model is relatively insensitive to
changes in N,, h% and o;, the amount of stochasticity in
the movement of the optimum. In fact, k is the only pa-
rameter that affects expected values for divergence; the
other parameters affect only the width of the confidence
interval. Moreover, the function describing predicted di-
vergence always maintains the same shape and slope under
this model. Varying k simply shifts the predicted curve
right (toward slower divergence with lower values of k)
or left (toward faster divergence with higher values of k).

We also made additional calculations to describe the
movement of the phenotypic optimum and the amount
by which populations are expected to lag behind the op-
timum under particular parameter values for this model
(see spreadsheet in the zip archive). For the parameter
combinations most favorable for this model, the pheno-
typic mean closely tracks the optimum, exhibiting virtually
no lag. The predicted location of the optimum (in terms
of the expected amount of phenotypic divergence) there-
fore shows the same pattern as expected divergence, falling
outside the bounds of empirical reality.

White Noise Motion of the Optimum

The special case of the preceding model in which popu-
lations experience a stationary optimum that undergoes
Gaussian white noise motion (k = 0, but g; > 0) was eval-
uated in the same manner as the neutral model. In other
words, because the predicted mean divergence over time
is 0, the model was evaluated on the raw scale. The white
noise model generally predicts a range for divergence that
is much smaller than the observed range across all time-
scales (fig. 6B). This model can provide a reasonable fit
to the data with central values of h’, w? and N, but only
in combination with a degree of stochasticity in the po-
sition of the optimum (o, = 50-100) that would result



in population extinction. This model differs profoundly
from the one that follows in that the stochastic variation
contributed by motion of the optimum is constant through
time, whereas under Brownian motion, it increases linearly
with time.

Brownian Motion of the Optimum

A model in which the optimum undergoes Brownian mo-
tion, with no long-term average change in position, suffers
from the same problems as the neutral model (fig. 6C). The
model is virtually insensitive to h*, w?, and N; only varying
the value of o, has a material effect on its predictions.
Consequently, whatever the values of h*, w? and N,, the
model predicts too little divergence on short timescales and
too much divergence on long timescales throughout the
realistic range of values for variance in movement of the
optimum (g; = 107°-107"). When o, takes on very small
values (107°-107°), the model predicts too little divergence
over the timescale. No realistic values of heritability, effective
population size, or strength of stabilizing selection can res-
cue the model from this predicament.

Peak Shift

A model in which the phenotypic mean shifts between
adjacent optima yields a reasonably good fit to the data
only under a highly restricted range of parameter com-
binations. With the central values for heritability and sta-
bilizing selection (h* = 04, w® = 3.214), the model fits
the data only if N, is in the range 200-750 and the distance
between the peaks is between 0.1 and 150 (fig. 6F). Even
then, the model tends to underestimate divergence on
short timescales. Weaker stabilizing selection only makes
the situation worse. The model is especially sensitive to
the depth of the valley between the adjacent peaks,
W,/W,. Notice that unless the valley is extremely shallow,
such that W,/W, < 1.01, no divergence is predicted in most
cases, and divergence thus becomes undefined on the log,,
scale (see supplementary spreadsheet). Otherwise, model
failure is always a result of predicted divergence that is
too slow on short timescales.

Discussion

In this article, we show that the paradox of morphological
stasis can be resolved by applying models that incorporate
elements of both directional and stabilizing selection. The
failure of a neutral model, coupled with the success of
models with stabilizing and directional selection, provides
powerful evidence that selection is a crucial element in
understanding broad patterns of morphological divergence
(see details below). On the other hand, our results indicate
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that genetic constraints play at most a minor role in the
explanation of evolution patterns (i.e., fig. 1). We found
that model performance was highly sensitive to variation
in parameters of directional and stabilizing selection but
remarkably insensitive to variation in genetic constraint.
Indeed, in most models, heritability could be varied over
its entire feasible range (0.001-0.999) without appreciable
impact on predictions. This insensitivity is largely a con-
sequence of the large timescale at the far end of the data
range. Over a period of 10'-10” generations, even a trait
with miniscule heritability can show a considerable re-
sponse to selection. Finally, we note that although genetic
constraint does not appear to be a general explanation of
stasis in the data set that we have analyzed, genetic vari-
ation may limit evolution in other contexts and for other
kinds of characters. We now turn to the more detailed
lessons than can be gleaned by considering each model in
turn.

We found that a model of neutrality fails to account for
both stasis and patterns of morphological divergence. Un-
der the neutral model, huge evolutionary change can occur
over geological time as a result of genetic drift in the
phenotypic mean (Lynch and Hill 1986). Magnitudes of
change as large as those predicted by drift over long time
periods are simply not present in the data. Conversely, the
neutral model predicts too little evolutionary change on
shorter timescales (e.g., fig. 6A). One cannot compensate
for these model failures by constraining genetic variation.
Simulation of such a genetic constraint by using small
values for h? results in predicted levels of divergence far
beyond those observed over geological time. In agreement
with other analyses, these results suggest that genetic con-
straints by themselves can account neither for stasis nor
for the departures from stasis observed in the data set.

A model with a stationary optimum that undergoes
Brownian motion faces the same problem as the neutral
model. This model generally predicts too little evolution
on short timescales and too much evolution on long time-
scales. The performance of a model with a stationary op-
timum that undergoes white noise motion is even worse
than both of these models. In the white noise case, the
model predicts too little evolution on all timescales over
all realistic values of parameters.

The moving optimum model (Lynch and Lande 1995;
Lande and Shannon 1996) formalizes Simpson’s notion of
phyletic evolution (see fig. 31 in Simpson 1944) by de-
scribing a situation in which a population (or higher tax-
onomic unit) is challenged with an adaptive peak that
moves at a constant rate. This model predicts rates of
evolution that are far too fast compared with those ob-
served over geological time for most every parameter com-
bination. We can thus refute a scenario of strict phyletic
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gradualism in accounting for the observed patterns of
divergence.

Effective population size is the Achilles’ heel of peak
shift models. The particular model that we explored
(Lande 1985, 1986) could account for divergence on all
timescales, using central values for inheritance and selec-
tion, only if N, is in the range 200-750. Small population
size is required for populations to escape from one adap-
tive peak and be drawn to another, distant peak. With
N, > 200, there are virtually no realistic sets of parameters
that will allow this model to account for the divergence
that is observed on both short and moderately long time-
scales. Lande (1985) addressed this limitation by proposing
that the peak shift might be accomplished in one of n
small, isolated populations—similar to Mayr’s (1954)
model of peripatric speciation. Here we face the quandary
that such very small populations are unlikely to be rep-
resented in the fossil record. They are therefore unlikely
to produce the divergence data that we aim to explain.

The displaced optimum model (Lande 1976) accounts
for the divergence data over many parameter combinations
and over all timescales. Amount of divergence is limited
in this model by static and dynamic properties of the
adaptive landscape. The phenotypic mean chases an op-
timum that has instantaneously moved to a new position
and then resides near that new position for many gen-
erations. Contrary to the peak shift model, the displaced
optimum model does not require evolution in small pop-
ulations, nor does it demand that we invoke special meta-
population structures. Next, we discuss what the success
of this model implies about the causes of long-term evo-
lutionary stasis.

Persistent Configuration of the Adaptive Landscape

The explanation of stasis via selection requires not just
stabilizing selection but also long-term constraints on the
position of the adaptive peak. This requirement is apparent
in our results, which resoundingly reject models that pro-
duce perpetual change (neutrality and moving optimum).
Although the universality of environmental change makes
persistence in peak position difficult to accept (Hansen
and Houle 2004), many lineages experience stable biotic
interactions for millions of generations. Boucot (1978,
1990) discusses many examples of terrestrial and marine
communities that maintain stable composition over pe-
riods ranging from 1 to 300 million years. It is not un-
realistic to assume that lineages situated in such com-
munities experience long-term stability in the position of
their adaptive peaks. Furthermore, stabilizing selection is
not a simple external, environmental issue that is imposed
purely from without. Stabilizing selection arises from the
interaction between organisms and their environment—

both internal and external. Stabilizing selection can thus
be thought of as resulting from external, normalizing
forces (e.g., predation, competition) together with the in-
ternal, stabilizing constraints that abound at all levels of
organization as a consequence of functional interactions.
Long-term persistence in the position and configuration
of the adaptive landscape may be promoted by interactions
among characters. Such interactions are a key ingredient
in multivariate stabilizing selection (Berg 1959). The
strength of the stabilizing effect of these interactions is
captured in multivariate analyses that measure correla-
tional selection (i.e., the off-diagonal elements in the vy-
and w-matrices; Lande and Arnold 1983). While there are
still dismally few estimates of the strength of correlational
selection (for examples, see Arnold 1988; Brodie 1992),
there is considerable evidence for its frequent operation.
For example, morphologists have long realized that char-
acter complexes such as the components of vertebrate den-
tition engender stability as a consequence of the strong
functional interactions for which they are coselected. These
complex phenotypic interactions help to build the genetic
and phenotypic correlations that create phenotypic inte-
gration (Olson and Miller 1958; Lande 1980)—a mani-
festation of long-maintained stabilizing selection.

Constrained Optima and the Existence of
Stable Adaptive Zones

The surprising success of the displaced optimum model
over all timescales supports the notion of stable adaptive
zones. In our implementations of this model, we displaced
the optimum just once and asked, How closely does the
phenotypic mean approach the new optimum over each
time interval? For the range of displacements we employed
(0.01-100), the mean rapidly evolved to the immediate
vicinity of the new optimum. Surprisingly, such single dis-
placements by a characteristic amount accounted for the
divergence data over all timescales. Recurrent displace-
ments of the optimum are likely in the natural world, so
it is especially surprising that a single displacement fits the
data so well. The success of this model may be attributed
to our single displacements being surrogates for the net
displacement of the optimum in evolving lineages. Thus,
suppose the successful parameter value for displacement
is 30. On short timescales, 3¢ might be a surrogate for an
actual, single displacement of this magnitude. On longer
timescales, the actual optimum might move several or
many times, but nevertheless if its total or net displacement
is typically not more than 30, then the model will accu-
rately predict the results of that process. Although we used
a single displacement on longer timescales, the model can
succeed because it correctly predicts phenotypic divergence
in response to net displacement of the optimum. This view



of the model’s success directs our attention to factors that
could limit net displacement of the optimum to a value
such as 30.

Simpson’s (1944, 1953) concept of adaptive zones pro-
vides a useful framework for considering limits on the
movement of the adaptive optimum. In Simpson’s world-
view, an adaptive zone is an ecological mode of life that
imposes particular constraints on phenotype. Thus, the
aerial insectivore adaptive zone necessitates flying as a con-
dition of occupancy. This zone has supported independent
invasions and radiations by birds and bats (Simpson 1944,
p. 193). In his diagrams of adaptive zones, Simpson draws
a band across a space in which morphology is plotted
against time. Within this band, an evolving lineage tracks
a moving optimum that sometimes bifurcates or otherwise
diverges from the ancestor, but the optimum, and hence
the phenotypic mean, remains within the band or adaptive
zone. This idea is similar to Gingerich’s “time form lattice”
concept (Gingerich 2001; fig. 9)—the notion that reflecting
boundaries exist on the amount of change possible, beyond
which organisms will no longer be considered members
of the same lineage. Returning to Simpson’s imagery, the
success of the displaced optimum model suggests that
adaptive zones are typically less about 6 phenotypic stan-
dard deviations in width. What might account for this
characteristic width?

All of the factors that promote stabilizing selection (e.g.,
interspecific competition, developmental constraints) may
also contribute to the existence of narrow adaptive zones.
In addition, the boundaries and hence the width of adap-
tive zones may be defined to a large extent by energy
balances and intrinsic limits on design. These limitations
arise from restrictions imposed by the strengths and in-
trinsic properties of materials, such as bone and cartilage.
Such physical constraints are implicated in the trend for
flying vertebrates to have much smaller body sizes than
the largest of their flightless relatives.

A Data-Based Vision of the Adaptive Landscape

The adaptive landscape is arguably the most important
integrative concept in evolutionary biology (Arnold et al.
2001). We estimated the curvature (H) and width of the
adaptive landscape (a function of w?), as well as the dis-
tance of the phenotypic mean from the adaptive peak
(]z—8]), using a database of standardized linear (3) and
quadratic (7y) selection gradients estimated from many
contemporary populations (Kingsolver et al. 2001). These
calculations suggest that phenotypic means are typically
very close to the adaptive peak (46% are within 1 phe-
notypic standard deviation of the optimum, and 65% are
within 2 standard deviations; figs. 8, 9; table 2). Such prox-
imity reinforces the intuition of many naturalists that pop-
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Figure 9: Vision of the adaptive landscape using estimates of parameters
based on a recent summary of selection studies (table 2). In the top panel,
a Gaussian adaptive landscape, W as a function of z, is shown in which
> = 3, a modal value for this selection parameter. The bottom panel
shows a normally distributed trait, z, with unit variance and a mean
situated 1.10 phenotypic standard deviations away from the optimum of
the adaptive landscape, a median value for this displacement.

ulations are highly adapted to local conditions. Close prox-
imity to the adaptive peak also implies that strong
directional selection is unlikely to be sustained for long
periods of time, in agreement with analysis of evolutionary
rates in contemporary populations by Kinnison and Hen-
dry (2001). The proximity of the mean to the adaptive
peak may be even closer than our calculations indicate.
Hereford et al. (2004) and Hersch and Phillips (2004) have
suggested that, for a variety of reasons, the distribution of
(8 reported by Kingsolver et al. (2001) is artificially shifted
toward higher absolute values. Similarly, although the
range of w” is large, its frequency distribution is strongly
leptokurtic with a modal value of 3.214 (fig. 7; table 2).
Thus, the strength of stabilizing selection can often be
strong in nature, stronger than is usually assumed in the-
oretical studies.

We need additional multivariate analyses of selection to
make stronger inferences about the adaptive landscape.
Because studies of nonlinear selection are overwhelmingly
univariate (Kingsolver et al. 2001), we need to consider
how this deficiency affects our vision of selection surfaces
and adaptive landscapes (Phillips and Arnold 1989; Simms
1990; Blows and Brooks 2003). Univariate analyses are
likely to overestimate the strength of stabilizing selection,
because they do not account for indirect effects arising
from stabilizing selection on correlated characters (Lande
and Arnold 1983, eq. [15c]). If nonlinear selection on
correlated characters is both stabilizing and disruptive, de-
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pending on the character, the bias introduced by univariate
analysis is more difficult to characterize. A recent survey
suggests that this more complicated circumstance is likely.
Blows and Brooks (2003) survey 19 data sets that included
three or more characters and found that the selection sur-
face was saddle shaped in a large majority of cases. Saddles
have also been found in a number of other multivariate
cases (Arnold 1988; Arnold and Bennett 1988; Simms
1990; Brodie 1992; Simms and Rausher 1993). This prev-
alence of saddles is consistent with the observation that v
appears to be symmetrically distributed about 0 (King-
solver et al. 2001). Finally, Blows and Brooks (2003) find
that the absolute value of nonlinear selection is stronger
when it is measured along the eigenvectors of trait space
rather than along the original trait axes. In this sense,
nonlinear selection is probably underestimated in the ma-
jority of studies, which do not use canonical axes. In sum-
mary, although we know that univariate analyses can dis-
tort our vision of selection surfaces, we cannot say whether
there is a positive or negative bias in the compilations of
nonlinear selection coefficients reported in Kingsolver et
al. (2001) and in this article (fig. 7). Our predominantly
univariate view of the landscape will undoubtedly change
with additional study of multivariate selection. From the
multivariate studies conducted so far, it appears that se-
lection surfaces, and perhaps adaptive landscapes, are often
saddle shaped.

Implications

Comparative methods for inferring adaptation are often
based on models for evolutionary process (e.g., Felsenstein
1985; Martins and Hansen 1996; Hansen 1997; Hansen
and Orzack 2005). The present results suggest that the
most commonly used process model, Brownian motion,
is not the best predictor of evolutionary pattern. Felsen-
stein’s (1985) independent contrasts method, for example,
assumes Brownian motion-like evolution, typically mod-
eled as random genetic drift or as Brownian motion of
the optimum of a stabilizing selection function. We found
that neither of these models produced a satisfactory fit to
Gingerich’s (2001) large database. The recurrent pattern
of failure of these models is that too much divergence is
predicted on moderate to long timescales. In particular,
these models make the incorrect assumption that the var-
iance among replicate lineages increases linearly with time.
Felsenstein (1985) proposes that contrasts be inversely
weighted by variances with this time-dependent feature.
As a consequence, contrasts with long divergence times
may be hugely devalued in assessing character correlations.
Furthermore, contrasts are unlikely to be independent un-
der other, non-Brownian motion models of stabilizing
selection.

Phylogenetic comparative methods generally have fo-
cused on characters exhibiting evolutionary change while
ignoring the possibility that ancestral characters retained
for long periods are adaptations maintained by stabilizing
selection (Hansen 1997; Butler and King 2004). Our results
help to validate Hansen’s (1997) model, which envisions
organisms evolving in response to stabilizing selection im-
posed by stable adaptive optima and treats interspecific
variation as arising from variation in adaptive optima. The
important additional element that arises from our analysis
is the necessity of invoking a limit or barrier to peak move-
ment. Thus, our results suggest that uncertainty in the
reconstruction of ancestral character states may be enor-
mously inflated by using an inappropriate, neutral model
of character evolution (Schluter et al. 1997) rather than
one with a constrained optimum.

Inference of phylogenetic trees requires assumptions
about evolutionary process (Felsenstein 2003). In phylo-
genetic analysis based on molecular data, incorporation of
an explicit process model, with estimation of model pa-
rameters from the data, has long been the norm. No such
consensus approach exists in the realm of phenotypic char-
acters (Wiens 2000), perhaps because of a lack of consen-
sus on a process model. Our results suggest that process
models with constrained movement of an intermediate
optimum may serve the role in inference of phylogeny
from phenotypic data that Kimura’s (1983) neutral model
has served for molecular data. One such quantitative ge-
netic model (the displaced optimum model) is capable of
accounting for phenotypic divergence over a huge range
of timescales but unrealistically assumes a single displace-
ment of the adaptive peak. The next generation of process
models for phenotypic traits should include stabilizing se-
lection but explore the consequences of autocorrelation
and various constraints on peak movement.

For inference of phylogeny, slowly evolving characters
are often preferred over rapidly evolving characters be-
cause homoplasy is minimized. This choice is sometimes
justified on the argument that rapidly evolving characters
are adaptive, whereas invariant or slowly evolving char-
acters are not. Our analysis suggests instead that invariance
is a consequence of stabilizing selection and constraints
on peak displacement. From this perspective, synapo-
morphies arise when an ancestor invades a new adaptive
zone and a trait is thereafter maintained by stabilizing
selection, with only modest displacements of the optimum.
In other words, shared derived characters should attract
our attention for the insights they may provide into evo-
lutionary process, ecology, and history. They do more than
define groups.



Conclusions

Our results suggest that properties of the adaptive land-
scape (topography, stabilizing selection, peak movement)
account for the alternation between stasis and bursts of
evolution that is commonly observed in the fossil record.
In contrast, theories of punctuated equilibria (Gould 2002)
emphasize divergence coincident with speciation and do
not make predictions about the magnitude of divergence.
Our results indicate that a model of an adaptive landscape
with a single, displaced optimum can explain observed
patterns of phenotypic divergence across timescales rang-
ing from 1 to several million generations. When viewed
in light of the evidence for rapid evolution in contem-
porary populations and the stasis that characterizes many
fossil lineages, these results suggest that an intermediate
optimum governs the tempo of evolution by virtue of
constrained movement inside adaptive zones.
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